Consider an estimation of the Hurst parameter $H\in(0,1)$ and the volatility parameter $\sigma>0$ for a fractional Brownian motion with a drift term under high-frequency observations with a finite time interval. In the present paper, we propose a consistent estimator of the parameter $\theta=(H,\sigma)$ combining the ideas of a quasi-likelihood function based on a local Gaussian approximation of a high-frequently observed time series and its frequency-domain approximation. Moreover, we prove an asymptotic normality property of the proposed estimator for all $H\in(0,1)$ when the drift process is constant.
翻译:考虑对赫斯特参数$H\ in( 0. 1) 和波动参数$\ sigma> 0$ 的估算, 用于在高频观察下进行一个有一定时间间隔的高频观察下漂移期的棕色小片运动的挥发性参数$Sigma> 0$。 在本文件中, 我们提议一个一致的参数$\theta=( H,\ sigma)$的估算值, 结合基于高斯近似功能的理念, 其基础是高斯近似值的高频观测时间序列及其频度近似值。 此外, 当漂移过程保持不变时, 我们证明所有H\ in ( 0, 1美元) 的拟议估计值的无症状常态性常态性。