In Bayesian Deep Learning, distributions over the output of classification neural networks are often approximated by first constructing a Gaussian distribution over the weights, then sampling from it to receive a distribution over the softmax outputs. This is costly. We reconsider old work (Laplace Bridge) to construct a Dirichlet approximation of this softmax output distribution, which yields an analytic map between Gaussian distributions in logit space and Dirichlet distributions (the conjugate prior to the Categorical distribution) in the output space. Importantly, the vanilla Laplace Bridge comes with certain limitations. We analyze those and suggest a simple solution that compares favorably to other commonly used estimates of the softmax-Gaussian integral. We demonstrate that the resulting Dirichlet distribution has multiple advantages, in particular, more efficient computation of the uncertainty estimate and scaling to large datasets and networks like ImageNet and DenseNet. We further demonstrate the usefulness of this Dirichlet approximation by using it to construct a lightweight uncertainty-aware output ranking for ImageNet.


翻译:在Bayesian Deep Learning中,对分类神经网络输出的分布往往通过首先对重量进行高斯分布,然后从中取样,以获得软负输出的分布。这是昂贵的。我们重新考虑旧的工程(Laplace Bridge),以构建软负输出分布的Drichlet近似值,从而产生高斯分布在logit空间和Dirichlet分布在输出空间(分类分布之前的共产体)之间的分析图。重要的是,香草拉普尔桥有一定的局限性。我们分析这些缺陷并提出一个简单的解决办法,比软负负负-Gaussian组件的其他常用估计值要好。我们证明,由此形成的Drichlet分布具有多种优势,特别是更高效地计算不确定性估计和向图像网和DenseNet等大型数据集和网络的缩放。我们进一步展示了这种Drichlet近值的有用性,方法是利用它来构建一个轻度的不确定性-觉察觉图像网输出排名。

0
下载
关闭预览

相关内容

因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
国家自然科学基金
0+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
30+阅读 · 2021年7月7日
Arxiv
10+阅读 · 2021年2月18日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
相关基金
国家自然科学基金
0+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员