A major challenge in studying robustness in deep learning is defining the set of ``meaningless'' perturbations to which a given Neural Network (NN) should be invariant. Most work on robustness implicitly uses a human as the reference model to define such perturbations. Our work offers a new view on robustness by using another reference NN to define the set of perturbations a given NN should be invariant to, thus generalizing the reliance on a reference ``human NN'' to any NN. This makes measuring robustness equivalent to measuring the extent to which two NNs share invariances, for which we propose a measure called STIR. STIR re-purposes existing representation similarity measures to make them suitable for measuring shared invariances. Using our measure, we are able to gain insights into how shared invariances vary with changes in weight initialization, architecture, loss functions, and training dataset. Our implementation is available at: \url{https://github.com/nvedant07/STIR}.
翻译:在深层学习中,研究稳健性的一个主要挑战是界定“毫无意义的”扰动,某个神经网络(NN)应该对此无动于衷。关于稳健性的大多数工作都隐含地将一个人作为定义这种扰动的参考模型。我们的工作为稳健性提供了一种新的观点,即使用另一个参考点NN来定义某个给定的扰动组,应该是没有变化的,从而把对“Human NN'的参考点”的依靠推广到任何NNN。这样,衡量稳健性就相当于衡量两个非军事网络(我们为此提议了一项称为STIR的措施)所分担的偏差的程度,即STIR.STIR重新使用现有的类似代表度措施,使之适合于衡量共振动性。我们利用我们的衡量尺度,能够了解在权重初始化、结构、损失功能和培训数据集方面差异的共性。我们的实施情况见于:<url>s://github.com/nvedant07/STIR}。