Group-equivariant neural networks have emerged as a data-efficient approach to solve classification and regression tasks, while respecting the relevant symmetries of the data. However, little work has been done to extend this paradigm to the unsupervised and generative domains. Here, we present Holographic-(V)AE (H-(V)AE), a fully end-to-end SO(3)-equivariant (variational) autoencoder in Fourier space, suitable for unsupervised learning and generation of data distributed around a specified origin. H-(V)AE is trained to reconstruct the spherical Fourier encoding of data, learning in the process a latent space with a maximally informative invariant embedding alongside an equivariant frame describing the orientation of the data. We extensively test the performance of H-(V)AE on diverse datasets and show that its latent space efficiently encodes the categorical features of spherical images and structural features of protein atomic environments. Our work can further be seen as a case study for equivariant modeling of a data distribution by reconstructing its Fourier encoding.
翻译:群体等同神经网络已成为解决分类和回归任务的一种数据效率高的方法,同时尊重数据的相关对称,然而,将这一范式扩展至无人监督和基因化领域的工作很少。在这里,我们展示了全(V)AE(H-(V)AE),这是一个完全端到端的SO(3)(变量)自动编码器,适合不受监督地学习和生成分布于特定来源的数据。H-(V)AE受过培训,可以重建数据的球形四面形编码,在此过程中学习一个潜在空间,在描述数据方向的变异性框架之外,有一个信息性极强的隐含空间。我们广泛测试了H-(V)AE在不同数据集上的性能,并表明其潜在空间有效地编码了球形图像的绝对特征和蛋白原子环境的结构特征。我们的工作还可以被视为通过重建其四层定型结构来进行数据分布的变异性模型的案例研究。