Learning expressive molecular representations is crucial to facilitate the accurate prediction of molecular properties. Despite the significant advancement of graph neural networks (GNNs) in molecular representation learning, they generally face limitations such as neighbors-explosion, under-reaching, over-smoothing, and over-squashing. Also, GNNs usually have high computational costs because of the large-scale number of parameters. Typically, such limitations emerge or increase when facing relatively large-size graphs or using a deeper GNN model architecture. An idea to overcome these problems is to simplify a molecular graph into a small, rich, and informative one, which is more efficient and less challenging to train GNNs. To this end, we propose a novel molecular graph coarsening framework named FunQG utilizing Functional groups, as influential building blocks of a molecule to determine its properties, based on a graph-theoretic concept called Quotient Graph. By experiments, we show that the resulting informative graphs are much smaller than the molecular graphs and thus are good candidates for training GNNs. We apply the FunQG on popular molecular property prediction benchmarks and then compare the performance of some popular baseline GNNs on the obtained datasets with the performance of several state-of-the-art baselines on the original datasets. By experiments, this method significantly outperforms previous baselines on various datasets, besides its dramatic reduction in the number of parameters and low computational costs. Therefore, the FunQG can be used as a simple, cost-effective, and robust method for solving the molecular representation learning problem.


翻译:分子表达方式是有助于准确预测分子特性的关键。尽管在分子代表制学习方面石墨神经网络(GNNS)取得了显著进步,但它们一般都面临诸如近邻爆炸、低影响、超移动和超振等限制。此外,由于参数数量庞大,GNNS通常具有很高的计算成本。一般情况下,当面对相对大规模的图形或使用更深的GNN模型结构时,这种限制会出现或增加。克服这些问题的一个想法是将分子图简化成一个小、丰富、信息丰富、对培训GNNS来说挑战较少的参数。为此,我们提议建立一个名为FunQG的新型分子图形分析框架,作为分子特性的具有影响力的构件,根据一个叫作“引言图”的概念来确定其特性。我们通过实验发现,由此得出的低信息图表比分子图要小得多,因此是培训一些GNNNP的精密、丰富和丰富的参数,我们用FinQG的精度参数分析模型,而不是GNP的精度基准。我们把G的原始计算方法的精度基准数据比G的原始数据。

0
下载
关闭预览

相关内容

100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
23+阅读 · 2022年2月24日
Arxiv
12+阅读 · 2021年7月26日
Arxiv
35+阅读 · 2020年1月2日
VIP会员
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员