Detection of slip during object grasping and manipulation plays a vital role in object handling. Existing solutions largely depend on visual information to devise a strategy for grasping. Nonetheless, in order to achieve proficiency akin to humans and achieve consistent grasping and manipulation of unfamiliar objects, the incorporation of artificial tactile sensing has become a necessity in robotic systems. In this work, we propose a novel physics-informed, data-driven method to detect slip continuously in real time. The GelSight Mini, an optical tactile sensor, is mounted on custom grippers to acquire tactile readings. Our work leverages the inhomogeneity of tactile sensor readings during slip events to develop distinctive features and formulates slip detection as a classification problem. To evaluate our approach, we test multiple data-driven models on 10 common objects under different loading conditions, textures, and materials. Our results show that the best classification algorithm achieves an average accuracy of 99%. We demonstrate the application of this work in a dynamic robotic manipulation task in which real-time slip detection and prevention algorithm is implemented.
翻译:在物体捕捉和操纵过程中检测滑坡,在物体处理中发挥着关键作用。现有的解决方案主要取决于视觉信息,以制定捕捉策略。然而,为了达到与人类相似的熟练程度,并实现对不熟悉的物体的一致捕捉和操纵,将人工触摸感应纳入机器人系统已成为一项必要。在这项工作中,我们提议了一种新型的物理知情、数据驱动的方法,以实时持续检测滑坡。GelSight Mini,一种光学触觉传感器,安装在定制的抓抓取器上,以获得触觉读数。我们的工作利用滑动感应读数的不均匀性,在滑动事件期间开发独特的特征,并将其作为分类问题来制定幻觉检测。为了评估我们的方法,我们测试了在不同的装载条件、纹理和材料下对10个常见物体的多重数据驱动模型。我们的结果显示,最佳分类算法平均达到99%的准确度。我们展示了这项工作在动态机器人操纵任务中的应用情况,即实时测滑动性测算法。</s>