Implicit representations are widely used for object reconstruction due to their efficiency and flexibility. In 2021, a novel structure named neural implicit map has been invented for incremental reconstruction. A neural implicit map alleviates the problem of inefficient memory cost of previous online 3D dense reconstruction while producing better quality. % However, the neural implicit map suffers the limitation that it does not support remapping as the frames of scans are encoded into a deep prior after generating the neural implicit map. This means, that neither this generation process is invertible, nor a deep prior is transformable. The non-remappable property makes it not possible to apply loop-closure techniques. % We present a neural implicit map based transformation algorithm to fill this gap. As our neural implicit map is transformable, our model supports remapping for this special map of latent features. % Experiments show that our remapping module is capable to well-transform neural implicit maps to new poses. Embedded into a SLAM framework, our mapping model is able to tackle the remapping of loop closures and demonstrates high-quality surface reconstruction. % Our implementation is available at github\footnote{\url{https://github.com/Jarrome/IMT_Mapping}} for the research community.
翻译:在2021年,一个名为神经隐含图的新结构被发明了用于渐进重建的神经隐含图。一个神经隐含图缓解了先前在线三维密集重建的低效内存成本问题,同时提高了质量。% 然而,神经隐含图受到的限制是,它不支持重新绘图,因为扫描框架在生成神经隐含图之后被重新编码为深层。这意味着,这个生成过程既不可翻转,也没有一个深层隐含图是可变的。不可更新的属性使得无法应用循环封闭技术。%我们展示了一个基于神经隐含图的转换算法以填补这一空白。由于我们的神经隐含图是可以变换的,所以我们的模型支持重新绘制这一特殊潜在特征的地图。% 实验显示,我们的重新映射模块能够使神经隐含的内含图形图变成新形状。嵌入一个 SLM 框架,我们的映射模型能够解决环封闭的重新绘图,并展示高品质的地面重建。% 我们的模型可以用于进行以下的图状/MAR_FOD_MUD_MAR_MUD_MAR_BAR_BAR_BAR_MBAR_BAR_M_%我们的实施是可用的。