Structural design of neural networks is crucial for the success of deep learning. While most prior works in evolutionary learning aim at directly searching the structure of a network, few attempts have been made on another promising track, channel pruning, which recently has made major headway in designing efficient deep learning models. In fact, prior pruning methods adopt human-made pruning functions to score a channel's importance for channel pruning, which requires domain knowledge and could be sub-optimal. To this end, we pioneer the use of genetic programming (GP) to discover strong pruning metrics automatically. Specifically, we craft a novel design space to express high-quality and transferable pruning functions, which ensures an end-to-end evolution process where no manual modification is needed on the evolved functions for their transferability after evolution. Unlike prior methods, our approach can provide both compact pruned networks for efficient inference and novel closed-form pruning metrics which are mathematically explainable and thus generalizable to different pruning tasks. While the evolution is conducted on small datasets, our functions shows promising results when applied to more challenging datasets, different from those used in the evolution process. For example, on ILSVRC-2012, an evolved function achieves state-of-the-art pruning results.


翻译:神经网络的结构设计对于深层学习的成功至关重要。 虽然大多数先前的进化学习工程都旨在直接搜索网络的结构, 但对于另一个有希望的轨道, 频道的修剪, 也很少尝试过。 事实上, 以前的修剪方法采用了人为的修剪功能来评分频道对频道修剪的重要性, 这需要域知识, 并且可能是亚最佳的。 为此, 我们率先使用基因编程( GP) 来自动发现强大的修剪度量度。 具体地说, 我们设计了一个新的设计空间来表达高质量的可转移的修剪功能, 以确保在设计高效深层学习模型方面, 最近取得了重大的进展。 事实上, 之前的修剪裁方法采用了人为的修剪功能, 以评断频道对管道的重要性, 这需要域内知识, 并且可能是次优的。 为此, 我们先使用基因编程( GPGP) 来自动发现强大的修剪裁量量量量度。 具体地说, 我们的功能在小的数据集上展示了有希望的结果, 当应用到更具有挑战性的进化的进化过程时, 。

0
下载
关闭预览

相关内容

专知会员服务
60+阅读 · 2020年3月19日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
会议交流 | IJCKG: International Joint Conference on Knowledge Graphs
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2010年12月31日
Arxiv
13+阅读 · 2021年7月20日
Arxiv
37+阅读 · 2021年2月10日
Directional Graph Networks
Arxiv
27+阅读 · 2020年12月10日
Arxiv
92+阅读 · 2020年2月28日
A Comprehensive Survey on Transfer Learning
Arxiv
121+阅读 · 2019年11月7日
A Survey on Deep Transfer Learning
Arxiv
11+阅读 · 2018年8月6日
VIP会员
相关资讯
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
会议交流 | IJCKG: International Joint Conference on Knowledge Graphs
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
相关论文
Arxiv
13+阅读 · 2021年7月20日
Arxiv
37+阅读 · 2021年2月10日
Directional Graph Networks
Arxiv
27+阅读 · 2020年12月10日
Arxiv
92+阅读 · 2020年2月28日
A Comprehensive Survey on Transfer Learning
Arxiv
121+阅读 · 2019年11月7日
A Survey on Deep Transfer Learning
Arxiv
11+阅读 · 2018年8月6日
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2010年12月31日
Top
微信扫码咨询专知VIP会员