We introduce a Lagrangian nodal discontinuous Galerkin (DG) cell-centered hydrodynamics method for solving multi-dimensional hyperbolic systems. By incorporating an adaptation of Zalesak's flux-corrected transport algorithm, we combine a first-order positivity-preserving scheme with a higher-order target discretization. This results in a flux-corrected Lagrangian DG scheme that ensures both global positivity preservation and second-order accuracy for the cell averages of specific volume. The correction factors for flux limiting are derived from specific volume and applied to all components of the solution vector. We algebraically evolve the volumes of mesh cells using a discrete version of the geometric conservation law (GCL). The application of a limiter to the GCL fluxes is equivalent to moving the mesh using limited nodal velocities. Additionally, we equip our method with a locally bound-preserving slope limiter to effectively suppress spurious oscillations. Nodal velocity and external forces are computed using a multidirectional approximate Riemann solver to maintain conservation of momentum and total energy in vertex neighborhoods. Employing linear finite elements and a second-order accurate time integrator guarantees GCL consistency. The results for standard test problems demonstrate the stability and superb shock-capturing capabilities of our scheme.
翻译:本文提出了一种用于求解多维双曲系统的拉格朗日节点间断伽辽金(DG)单元中心流体动力学方法。通过结合Zalesak通量修正输运算法的改进版本,我们将一阶保正性格式与高阶目标离散化相结合,构建出一种通量修正的拉格朗日DG格式。该格式在保证全局保正性的同时,对比容的单元平均值具有二阶精度。通量限制的修正因子由比容导出,并应用于解向量的所有分量。我们采用几何守恒律(GCL)的离散形式对网格单元体积进行代数演化。对GCL通量施加限制器等效于使用受限节点速度移动网格。此外,我们为方法配备了局部保界斜率限制器以有效抑制伪振荡。节点速度与外力通过多方向近似黎曼求解器计算,以保持顶点邻域内的动量与总能量守恒。采用线性有限元与二阶精度时间积分器确保了GCL相容性。标准测试算例的结果验证了本格式的稳定性与卓越的激波捕捉能力。