Efficient scheduling of transmissions is a key problem in wireless networks. The main challenge stems from the fact that optimal link scheduling involves solving a maximum weighted independent set (MWIS) problem, which is known to be NP-hard. In practical schedulers, centralized and distributed greedy heuristics are commonly used to approximately solve the MWIS problem. However, these greedy heuristics mostly ignore important topological information of the wireless network. To overcome this limitation, we propose fast heuristics based on graph convolutional networks (GCNs) that can be implemented in centralized and distributed manners. Our centralized heuristic is based on tree search guided by a GCN and 1-step rollout. In our distributed MWIS solver, a GCN generates topology-aware node embeddings that are combined with per-link utilities before invoking a distributed greedy solver. Moreover, a novel reinforcement learning scheme is developed to train the GCN in a non-differentiable pipeline. Test results on medium-sized wireless networks show that our centralized heuristic can reach a near-optimal solution quickly, and our distributed heuristic based on a shallow GCN can reduce by nearly half the suboptimality gap of the distributed greedy solver with minimal increase in complexity. The proposed schedulers also exhibit good generalizability across graph and weight distributions.
翻译:高效传输调度是无线网络中的一个关键问题。 主要的挑战在于,最佳连接时间安排包括解决最大加权独立集(MWIS)问题,这是已知的NP硬型。在实际调度器中,集中和分散的贪婪的惯性杂交通常用于大致解决MWIS问题。然而,这些贪婪的惯性大多忽视无线网络的重要地形信息。为了克服这一限制,我们提议基于可集中和分布方式实施的图形共振网络(GCNs)的快速超常。我们集中的超常是基于以GCN和1级推出为指南的树类搜索。在我们分布式的MWIS解答器中,GCN产生与每连锁公用事业相结合的表层-觉结节嵌。此外,为了克服这一限制,我们开发了一个新的强化学习计划,以非差别的管道为基础对GCNNC进行训练。 中等规模的无线网络的测试结果表明,我们集中型超常能迅速达到接近最优化的解决方案,以1级推出1级的推出。在我们分布式的MWIS解决问题的解决方案中,并且以浅度平面平面平面平面平面平面平面平面平面的平面平面平面的平面的平面图还能够通过浅层平面的平面的平面平面的平面图式平面图式平面图式平面图式平面的平面图式平面的平面图。