This paper tackles two problems that are relevant to coding for insertions and deletions. These problems are motivated by several applications, among them is reconstructing strands in DNA-based storage systems. Under this paradigm, a word is transmitted over some fixed number of identical independent channels and the goal of the decoder is to output the transmitted word or some close approximation of it. The first part of this paper studies the deletion channel that deletes a symbol with some fixed probability $p$, while focusing on two instances of this channel. Since operating the maximum likelihood (ML) decoder in this case is computationally unfeasible, we study a slightly degraded version of this decoder for two channels and its expected normalized distance. We identify the dominant error patterns and based on these observations, it is derived that the expected normalized distance of the degraded ML decoder is roughly $\frac{3q-1}{q-1}p^2$, when the transmitted word is any $q$-ary sequence and $p$ is the channel's deletion probability. We also study the cases when the transmitted word belongs to the Varshamov Tenengolts (VT) code or the shifted VT code. Additionally, the insertion channel is studied as well as the case of two insertion channels. These theoretical results are verified by corresponding simulations. The second part of the paper studies optimal decoding for a special case of the deletion channel, the $k$-deletion channel, which deletes exactly $k$ symbols of the transmitted word uniformly at random. In this part, the goal is to understand how an optimal decoder operates in order to minimize the expected normalized distance. A full characterization of an efficient optimal decoder for this setup, referred to as the maximum likelihood* (ML*) decoder, is given for a channel that deletes one or two symbols.


翻译:本文的第一部分研究与插入和删除编码相关的两个问题。 这些问题是由多个应用程序引发的, 其中包括重建基于DNA的存储系统中的解码线。 在此范式下, 一个单词通过一些相同独立频道的固定数量传递, 解码器的目标是输出所传输的单词或某近似值。 本文的第一部分研究删除频道, 以某种固定概率删除一个符号, 并关注此频道的两种情况。 由于在此情况下操作的最大可能性( ML) 传输的解码符是计算不可行的, 我们为两个频道的解码值重建一个稍微退化的版本。 我们根据这些观察, 确定一个主要错误模式, 并推导出, 退化的 ML decoder 解码器的预期正常距离大约是$frac{3q-1qQ-1}p2$, 当传输的单词是删除任何美元, 和 $polp$是频道的删除概率。 当传输单词属于 Varhamder* 的解码属于 Varhamder Teal 的解算法部分时, 的解算算算算法, 。 在两个解算法中, 的解算法中, 的解算算法是这个解算法, 。 的解解的解算法, 。

0
下载
关闭预览

相关内容

专知会员服务
51+阅读 · 2020年12月14日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium7
中国图象图形学学会CSIG
0+阅读 · 2021年11月15日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium5
中国图象图形学学会CSIG
1+阅读 · 2021年11月11日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Estimation of the Shapley value by ergodic sampling
Arxiv
0+阅读 · 2022年4月19日
Arxiv
0+阅读 · 2022年4月17日
Arxiv
0+阅读 · 2022年4月17日
Convergence of the Discrete Minimum Energy Path
Arxiv
0+阅读 · 2022年4月15日
VIP会员
相关资讯
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium7
中国图象图形学学会CSIG
0+阅读 · 2021年11月15日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium5
中国图象图形学学会CSIG
1+阅读 · 2021年11月11日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员