In this paper we introduce an image-based person re-identification dataset collected across five non-overlapping camera views in the large and busy airport in Dublin, Ireland. Unlike all publicly available image-based datasets, our dataset contains timestamp information in addition to frame number, and camera and person IDs. Also our dataset has been fully anonymized to comply with modern data privacy regulations. We apply state-of-the-art person re-identification models to our dataset and show that by leveraging the available timestamp information we are able to achieve a significant gain of 37.43% in mAP and a gain of 30.22% in Rank1 accuracy. We also propose a Bayesian temporal re-ranking post-processing step, which further adds a 10.03% gain in mAP and 9.95% gain in Rank1 accuracy metrics. This work on combining visual and temporal information is not possible on other image-based person re-identification datasets. We believe that the proposed new dataset will enable further development of person re-identification research for challenging real-world applications. DAA dataset can be downloaded from https://bit.ly/3AtXTd6
翻译:在本文中,我们引入了一个通过爱尔兰都柏林大型和繁忙机场5个非重叠相机视图收集的基于图像的人的重新身份识别数据集。与所有公开提供的基于图像的数据集不同,我们的数据集包含时间戳信息以及框架号、相机和个人身份。此外,我们的数据集已完全匿名以遵守现代数据隐私条例。我们在数据集中采用了最先进的人重新身份识别模型,并表明,通过利用现有的时间戳信息,我们能够在 mAP中取得37.43%的显著收益,在Rang1中则获得30.22%的收益。我们还提议了贝叶斯时间序列后处理步骤,这进一步增加了10.03 %的收益,在Rang1精确度指标中增加了9.95%的收益。关于合并视觉和时间信息的工作不可能在其他基于图像的人重新身份识别数据集上进行。我们认为,拟议的新数据集将能够进一步开发对现实世界应用程序进行挑战的人重新身份识别研究。DAA数据集可以从 https://bitly/3AXT6d下载。DA数据设置可以从 https://bitly/3AXT6d下载。