Travel Time Estimation (TTE) is indispensable in intelligent transportation system (ITS). It is significant to achieve the fine-grained Trajectory-based Travel Time Estimation (TTTE) for multi-city scenarios, namely to accurately estimate travel time of the given trajectory for multiple city scenarios. However, it faces great challenges due to complex factors including dynamic temporal dependencies and fine-grained spatial dependencies. To tackle these challenges, we propose a meta learning based framework, MetaTTE, to continuously provide accurate travel time estimation over time by leveraging well-designed deep neural network model called DED, which consists of Data preprocessing module and Encoder-Decoder network module. By introducing meta learning techniques, the generalization ability of MetaTTE is enhanced using small amount of examples, which opens up new opportunities to increase the potential of achieving consistent performance on TTTE when traffic conditions and road networks change over time in the future. The DED model adopts an encoder-decoder network to capture fine-grained spatial and temporal representations. Extensive experiments on two real-world datasets are conducted to confirm that our MetaTTE outperforms six state-of-art baselines, and improve 29.35% and 25.93% accuracy than the best baseline on Chengdu and Porto datasets, respectively.
翻译:智能运输系统(ITS)对旅行时间估计(TTE)是智能旅行时间估计(TTE)不可或缺的。对于实现多城市情景的精细轨基底旅行时间估计(TTTE)非常重要,即准确估计多个城市情景的既定轨迹的旅行时间。然而,由于各种复杂因素,包括动态时间依赖和细差空间依赖等,它面临巨大挑战。为了应对这些挑战,我们提议一个基于元学习的框架MetATTE,通过利用精心设计的深层神经网络模型(DED,由数据处理前模块和Encoder-Decoder网络模块组成),不断提供准确的旅行时间估计。通过引入元学习技术,MetATTE的通用能力得到提高,使用少量例子,这些例子为在未来交通条件和道路网络发生变化时提高在TTE上取得一致业绩的潜力开辟了新机会。DEDED模型采用一个编码-解码网络,以捕捉精细的时空空间图示。在两个真实世界数据集中进行的广泛实验,这包括数据处理模块和Ecoder-Decard网络模块中分别改进了六号基线。