The positive definiteness of real quadratic forms with convolution structures plays an important role in stability analysis for time-stepping schemes for nonlocal operators.In this work, we present a novel analysis tool to handle discrete convolution kernels resulting from variable-step approximations for convolution operators. More precisely, for a class of discrete convolution kernels relevant to variable-step time discretizations,we show that the associated quadratic form is positive definite under some easy-to-check algebraic conditions. Our proof is based on an elementary constructing strategy using the properties of discrete orthogonal convolution kernels and complementary convolution kernels. To the best of our knowledge, this is the first general result on simple algebraic conditions for the positive definiteness of variable-step discrete convolution kernels. Using the unified theory, the stability for some simple non-uniform time-stepping schemes can be obtained in a straightforward way.
翻译:与变迁结构相关的真实二次曲线形式的确定性在非本地操作员时间步骤计划的稳定分析中起着重要作用。 在这项工作中,我们提出了一个新颖的分析工具,用于处理因变迁操作员不同步骤近似而产生的离散的二次曲线内核。更确切地说,对于与变迁时间分解有关的一组分立性二次曲线内核,我们表明,在某些容易核查的代数条件下,相关的二次曲线形式是肯定的。我们的证据是以使用离散或远方交替内核和互补的交替内核的特性的基本建设战略为基础的。据我们所知,这是关于变迁离位分立的分立交替内核的积极确定性的简单代数条件的第一个一般结果。使用统一理论,可以直接获得某些简单的非统一时间步骤的稳定性。