The aim of this work is to introduce and analyze a finite element discontinuous Galerkin method on polygonal meshes for the numerical discretization of acoustic waves propagation through poroelastic materials. Wave propagation is modeled by the acoustics equations in the acoustic domain and the low-frequency Biot's equations in the poroelastic one. The coupling is introduced by considering (physically consistent) interface conditions, imposed on the interface between the domains, modeling both open and sealed pores. Existence and uniqueness is proven for the strong formulation based on employing the semigroup theory. For the space discretization we introduce and analyze a high-order discontinuous Galerkin method on polygonal and polyhedral meshes, which is then coupled with Newmark-$\beta$ time integration schemes. A stability analysis both for the continuous problem and the semi-discrete one is presented and error estimates for the energy norm are derived for the semidiscrete problem. A wide set of numerical results obtained on test cases with manufactured solutions are presented in order to validate the error analysis. Examples of physical interest are also presented to test the capability of the proposed methods in practical cases.


翻译:这项工作的目的是在多边形模子中引入和分析一种有限元素不连续的Galerkin方法,用于通过孔径弹性材料对声波传播的声波的数分化。波波传播以声频域的声方程式和孔径弹性1中的低频Biot方程式为模型。结合是通过考虑(物理上一致的)接口条件、对域际界面施加的(开放和密封孔径的模型和密封孔径的)接口条件来引入和分析的。在采用半组理论的基础上对强烈的配方证明存在和独特性。关于空间分解,我们引入和分析关于多角和多角和多光度藻的高度顺序不连续的Galerkin方法,然后与新马克-$\beta美元的时间集成计划相结合。对连续问题和半分解的接口条件进行了稳定分析,为半分解问题得出能源规范的误差估计值。在采用半分解法的测试案例中获得的一组广泛的数字结果,以便验证误差分析。还介绍了实际兴趣的例子,用以测试拟议方法的能力。

0
下载
关闭预览

相关内容

CASES:International Conference on Compilers, Architectures, and Synthesis for Embedded Systems。 Explanation:嵌入式系统编译器、体系结构和综合国际会议。 Publisher:ACM。 SIT: http://dblp.uni-trier.de/db/conf/cases/index.html
专知会员服务
50+阅读 · 2020年12月14日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
开源书:PyTorch深度学习起步
专知会员服务
50+阅读 · 2019年10月11日
【新书】Python编程基础,669页pdf
专知会员服务
194+阅读 · 2019年10月10日
《自然》(20190829出版)一周论文导读
科学网
6+阅读 · 2019年8月30日
鲁棒机器学习相关文献集
专知
8+阅读 · 2019年8月18日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
ICLR2019最佳论文出炉
专知
12+阅读 · 2019年5月6日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Arxiv
0+阅读 · 2021年3月12日
VIP会员
相关资讯
《自然》(20190829出版)一周论文导读
科学网
6+阅读 · 2019年8月30日
鲁棒机器学习相关文献集
专知
8+阅读 · 2019年8月18日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
ICLR2019最佳论文出炉
专知
12+阅读 · 2019年5月6日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员