In this paper, we propose a simple but effective message passing method to improve the boundary quality for the semantic segmentation result. Inspired by the generated sharp edges of superpixel blocks, we employ superpixel to guide the information passing within feature map. Simultaneously, the sharp boundaries of the blocks also restrict the message passing scope. Specifically, we average features that the superpixel block covers within feature map, and add the result back to each feature vector. Further, to obtain sharper edges and farther spatial dependence, we develop a multiscale superpixel module (MSP) by a cascade of different scales superpixel blocks. Our method can be served as a plug-and-play module and easily inserted into any segmentation network without introducing new parameters. Extensive experiments are conducted on three strong baselines, namely PSPNet, DeeplabV3, and DeepLabV3+, and four challenging scene parsing datasets including ADE20K, Cityscapes, PASCAL VOC, and PASCAL Context. The experimental results verify its effectiveness and generalizability.
翻译:在本文中,我们提出了一个简单而有效的信息传递方法来提高语义分解结果的边界质量。在超级像素块生成的尖锐边缘的启发下,我们使用超级像素来指导在地貌地图内传递的信息。同时,这些块的尖锐边界也限制信息传递范围。具体地说,我们平均地显示超级像素块在地貌地图内覆盖的特征,并将结果添加到每个特性矢量上。此外,为了获得更锋利的边缘和更远的空间依赖性,我们通过一个不同尺度超级像素块的级联来开发一个多尺度的超级像素模块(MSPS)。我们的方法可以作为插件和剧模模模模块,在不引入新参数的情况下很容易插入到任何分解网络中。在三个强的基线上进行了广泛的实验,即PSPNet、DeeplabV3和DeepLabV3+,以及四个具有挑战性的场段的数据集,包括ADE20K、Cityscaps、PASAL VOC和PASAL环境。实验结果证实了其有效性和可概括性。