Influence Maximization (IM), which aims to select a set of users from a social network to maximize the expected number of influenced users, has recently received significant attention for mass communication and commercial marketing. Existing research efforts dedicated to the IM problem depend on a strong assumption: the selected seed users are willing to spread the information after receiving benefits from a company or organization. In reality, however, some seed users may be reluctant to spread the information, or need to be paid higher to be motivated. Furthermore, the existing IM works pay little attention to capture user's influence propagation in the future period as well. In this paper, we target a new research problem, named Reconnecting Top-l Relationships (RTlR) query, which aims to find l number of previous existing relationships but being stranged later, such that reconnecting these relationships will maximize the expected benefit of influenced users by the given group in a future period. We prove that the RTlR problem is NP-hard. An efficient greedy algorithm is proposed to answer the RTlR queries with the influence estimation technique and the well-chosen link prediction method to predict the near future network structure. We also design a pruning method to reduce unnecessary probing from candidate edges. Further, a carefully designed order-based algorithm is proposed to accelerate the RTlR queries. Finally, we conduct extensive experiments on real-world datasets to demonstrate the effectiveness and efficiency of our proposed methods.


翻译:影响最大化(IM)旨在从社会网络中选择一组用户,以尽量扩大预期受影响用户的数量,而影响最大化(IM)则是从社会网络中挑选一组用户,最近,大量关注大众通信和商业营销。目前专门研究IM问题的研究工作取决于一个强有力的假设:选定的种子用户在从公司或组织获得利益后愿意传播信息;然而,在现实中,一些种子用户可能不愿意传播信息,或需要支付更高的激励力。此外,现有的IM工作很少注意捕捉用户在未来时期的影响传播。在本文中,我们针对一个新的研究问题,即重新连接顶层关系(RTlR)查询,其目的是寻找过去存在关系的数目,但后来又感到奇怪,因此重新连接这些关系将使受影响用户在未来某个时期的预期利益最大化。我们证明RTlR问题非常棘手。建议一种高效的算法,用来回答基于影响估计技术的RTlRset的查询,以及将不必要地将预测方法链接到未来网络结构的更近端端。我们还设计了一个快速的数据查询方法。最后,我们设计了一个快速的运行方法,以显示我们所设计到更深层的网络结构。

0
下载
关闭预览

相关内容

Networking:IFIP International Conferences on Networking。 Explanation:国际网络会议。 Publisher:IFIP。 SIT: http://dblp.uni-trier.de/db/conf/networking/index.html
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年7月1日
VIP会员
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员