We study the problem of fairly allocating a set of m indivisible chores (items with non-positive value) to n agents. We consider the desirable fairness notion of 1-out-of-d maximin share (MMS) -- the minimum value that an agent can guarantee by partitioning items into d bundles and receiving the least valued bundle -- and focus on ordinal approximation of MMS that aims at finding the largest d <= n for which 1-out-of-d MMS allocation exists. Our main contribution is a polynomial-time algorithm for 1-out-of-floor(2n/3) MMS allocation, and a proof of existence of 1-out-of-floor(3n/4) MMS allocation of chores. Furthermore, we show how to use recently-developed algorithms for bin-packing to approximate the latter bound up to a logarithmic factor in polynomial time.
翻译:我们研究了将一组不可分割的杂活(非正值物品)公平分配给代理的问题。我们考虑了将一组杂活(非正值物品)分配给代理商的合理公平概念。我们考虑了一个代理商通过将物品分成d捆和接收价值最低的捆绑可以保证的最低价值(MMS)这一可取的公平概念。我们注重MMS的正统近似值,其目的是找到最大的 d ⁇ n, 其中MMS分配了1 个非正值物品。我们的主要贡献是对1 层(2n/3) MMS分配采用多米时算法,并证明存在1 层(3n/4) MMS分配的杂活。此外,我们展示了如何使用最近开发的算法来进行垃圾包装,以近似于多米时的对数系数。