In \citep{andreas2020task-oriented}, a dataflow (DF) based dialogue system was introduced, showing clear advantages compared to many commonly used current systems. This was accompanied by the release of SMCalFlow, a practically relevant, manually annotated dataset, more detailed and much larger than any comparable dialogue dataset. Despite these remarkable contributions, the community has not shown further interest in this direction. What are the reasons for this lack of interest? And how can the community be encouraged to engage in research in this direction? One explanation may be the perception that this approach is too complex - both the the annotation and the system. This paper argues that this perception is wrong: 1) Suggestions for a simplified format for the annotation of the dataset are presented, 2) An implementation of the DF execution engine is released\footnote{https://github.com/telepathylabsai/OpenDF}, which can serve as a sandbox allowing researchers to easily implement, and experiment with, new DF dialogue designs. The hope is that these contributions will help engage more practitioners in exploring new ideas and designs for DF based dialogue systems.
翻译:\ citep{ 和reas2020Task- 方向} 引入了一个基于数据流( DF) 的对话系统, 与许多常用的当前系统相比, 显示出明显的优势。 与此同时, SMCalFlow 的发布也是错误的。 SMCalFlow 是一个实用的、 手动附加说明的数据集, 更详细, 比任何可比的对话数据集要大得多。 尽管有这些显著的贡献, 社区并没有表现出对这个方向的进一步兴趣。 缺乏兴趣的原因是什么? 如何鼓励社区参与这个方向的研究? 一个解释可能是认为这个方法太复杂, 既包括注解系统, 也包括系统。 本文认为这种看法是错误的 :1 有关简化数据集注解格式的建议 ; 2 使用 DF 执行引擎是发布\ footootes {http:// github.com/telepectlabsai/ OpentDFDF}, 它可以作为一个沙箱, 使研究人员能够轻松地执行和实验新的 DFDF对话系统的设计。 希望这些贡献将有助于更多的从业人员探索新的想法和设计。