We develop a Bayesian inference method for discretely-observed stochastic differential equations (SDEs). Inference is challenging for most SDEs, due to the analytical intractability of the likelihood function. Nevertheless, forward simulation via numerical methods is straightforward, motivating the use of approximate Bayesian computation (ABC). We propose a conditional simulation scheme for SDEs that is based on lookahead strategies for sequential Monte Carlo (SMC) and particle smoothing using backward simulation. This leads to the simulation of trajectories that are consistent with the observed trajectory, thereby increasing the ABC acceptance rate. We additionally employ an invariant neural network, previously developed for Markov processes, to learn the summary statistics function required in ABC. The neural network is incrementally retrained by exploiting an ABC-SMC sampler, which provides new training data at each round. Since the SDE simulation scheme differs from standard forward simulation, we propose a suitable importance sampling correction, which has the added advantage of guiding the parameters towards regions of high posterior density, especially in the first ABC-SMC round. Our approach achieves accurate inference and is about three times faster than standard (forward-only) ABC-SMC. We illustrate our method in four simulation studies, including three examples from the Chan-Karaolyi-Longstaff-Sanders SDE family.
翻译:暂无翻译