Given partial objects and some complete ones as references, point cloud completion aims to recover authentic shapes. However, existing methods pay little attention to general shapes, which leads to the poor authenticity of completion results. Besides, the missing patterns are diverse in reality, but existing methods can only handle fixed ones, which means a poor generalization ability. Considering that a partial point cloud is a subset of the corresponding complete one, we regard them as different samples of the same distribution and propose Structure Retrieval based Point Completion Network (SRPCN). It first uses k-means clustering to extract structure points and disperses them into distributions, and then KL Divergence is used as a metric to find the complete structure point cloud that best matches the input in a database. Finally, a PCN-like decoder network is adopted to generate the final results based on the retrieved structure point clouds. As structure plays an important role in describing the general shape of an object and the proposed structure retrieval method is robust to missing patterns, experiments show that our method can generate more authentic results and has a stronger generalization ability.


翻译:将部分对象和部分完整对象作为参考, 点云的完成旨在恢复真实形状。 但是, 现有方法很少注意一般形状, 导致完成结果的真实性差。 此外, 缺失的形态在现实中是多种多样的, 但现有方法只能处理固定的形态, 意味着简单化能力差。 考虑到部分点云是相应完整云的子集, 我们把它们视为相同分布的不同样本, 并提议基于结构检索点完成网络( SRPCN ) 。 它首先使用 k- 手段集成来提取结构点并将其分散到分布中, 然后将 KL divergence 作为一种衡量标准, 以找到与数据库输入最匹配的完整结构点云。 最后, 采用了类似 PCN 的解码网络来产生基于回收的结构云的最终结果。 由于结构在描述一个对象的一般形状和拟议的结构检索方法对缺失模式具有很强的作用, 实验表明我们的方法可以产生更真实的结果, 并且更强的概括能力。

0
下载
关闭预览

相关内容

【干货书】开放数据结构,Open Data Structures,337页pdf
专知会员服务
16+阅读 · 2021年9月17日
专知会员服务
44+阅读 · 2020年10月31日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
论文浅尝 | Open world Knowledge Graph Completion
开放知识图谱
19+阅读 · 2018年1月30日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
国家自然科学基金
4+阅读 · 2015年12月31日
国家自然科学基金
4+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
VIP会员
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
论文浅尝 | Open world Knowledge Graph Completion
开放知识图谱
19+阅读 · 2018年1月30日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
相关基金
国家自然科学基金
4+阅读 · 2015年12月31日
国家自然科学基金
4+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员