When humans read a text, their eye movements are influenced by the structural complexity of the input sentences. This cognitive phenomenon holds across languages and recent studies indicate that multilingual language models utilize structural similarities between languages to facilitate cross-lingual transfer. We use sentence-level eye-tracking patterns as a cognitive indicator for structural complexity and show that the multilingual model XLM-RoBERTa can successfully predict varied patterns for 13 typologically diverse languages, despite being fine-tuned only on English data. We quantify the sensitivity of the model to structural complexity and distinguish a range of complexity characteristics. Our results indicate that the model develops a meaningful bias towards sentence length but also integrates cross-lingual differences. We conduct a control experiment with randomized word order and find that the model seems to additionally capture more complex structural information.
翻译:当人类阅读文本时,他们的眼部运动会受到输入句子结构复杂性的影响。这种认知现象存在于各种语言之间,最近的研究表明,多语言模式利用不同语言之间的结构相似性来促进跨语言的转移。我们使用判决一级的眼跟踪模式作为结构复杂性的认知指标,并表明多语言模式XLM-ROBERTA能够成功地预测13种类型多样语言的不同模式,尽管只对英文数据进行微调。我们用数量来量化模型对结构复杂性的敏感性,并区分一系列复杂特征。我们的结果显示,该模式对刑期产生了有意义的偏差,但也融合了跨语言的差异。我们用随机化的单词顺序进行控制实验,发现该模式似乎进一步捕捉了更为复杂的结构信息。</s>