Discourse processing suffers from data sparsity, especially for dialogues. As a result, we explore approaches to build discourse structures for dialogues, based on attention matrices from Pre-trained Language Models (PLMs). We investigate multiple tasks for fine-tuning and show that the dialogue-tailored Sentence Ordering task performs best. To locate and exploit discourse information in PLMs, we propose an unsupervised and a semi-supervised method. Our proposals achieve encouraging results on the STAC corpus, with F1 scores of 57.2 and 59.3 for unsupervised and semi-supervised methods, respectively. When restricted to projective trees, our scores improved to 63.3 and 68.1.
翻译:因此,我们探索了建立对话对话结构的方法,其依据是培训前语言模式的注意矩阵。我们调查了进行微调的多重任务,并表明对话定制的判刑顺序任务最有效。为了找到和利用PLM的谈话信息,我们建议了一种不受监督和半监督的方法。我们的建议在STAC系统中取得了令人鼓舞的成果,F1分数分别为57.2分和59.3分,用于未经监督和半监督的方法。当仅限于投影树时,我们的分数提高到63.3分和68.1分。