项目名称: 碳化硅纳米纤维改性C/C复合材料微观织构优化及摩擦磨损行为与机理研究
项目编号: No.51505503
项目类型: 青年科学基金项目
立项/批准年度: 2016
项目学科: 机械、仪表工业
项目作者: 陈洁
作者单位: 中南大学
项目金额: 20万元
中文摘要: 随着航空发动机轴间密封材料的发展,常规C/C复合材料存在摩擦系数不稳定,高温磨损量偏大等不足,制约了其在新一代航空发动机密封材料领域的应用。本项目设计具有优异耐磨性能的碳化硅纳米纤维(SiCNF)新组元,优化C/C复合材料微观织构,提高其摩擦磨损性能。采用催化化学气相沉积法在预制体炭纤维表面原位生长SiCNF,然后采用化学气相渗透工艺制备基体热解炭,得到纳米纤维改性C/C复合材料。研究SiCNF对热解炭沉积模式的影响机理,探讨炭纤维/热解炭界面层微观织构形成机制,获得组织优化控制;研究不同载荷、对偶件和环境下改性C/C复合材料的室温及高温摩擦磨损行为、SiCNF对材料摩擦磨损性能的影响机制,揭示改性材料的摩擦磨损机理及其与材料微观组织结构的内在关联,提出优化控制方法,获得优异摩擦磨损性能的改性C/C复合材料,为设计制备新一代高性能航空发动机密封材料用C/C复合材料提供理论指导和方法基础。
中文关键词: C/C复合材料;碳化硅纳米纤维;界面层;摩擦磨损;摩擦磨损机理
英文摘要: With the development of axes sealing material for aeroengine, the traditional carbon/carbon composites shows disadvantages of friction instability and large wear, especially at high temperature. these disadvantages restrict their widespread application in the field of axes sealing material with high performance and high reliability for aeroengine.In this project, SiC nanofibers (SiCNF) are designed to optimized the microtexture and tribological properties of C/C composites. SiCNF grow on the carbon fibers by catalytic chemical vapor deposition and carbon matrix are prepared by chemical vapor deposition. The modified C/C composites are obtained. The influence of SiCNF on the deposition of pyrolytic carbon are studied. The formation mechanism of microtexture of fiber/PyC interface are investigated. The mechanical properties and failure mechanism of nanofiber-modified C/C composites are investigated. The friction and wear behavior and mechanism under different conditions are investigated. The relationship between tribological properties and material microstructure, the match between tribological properties and mechanical properties are explored, and the optimal control method is proposed. The modified C/C composites with both excellent tribological and mechanical properties are obtained, which will provide theoretical guidance and methodological basis for design and preparation of high-performance sealing materials.
英文关键词: Carbon/carbon composite;SiC nanofiber;Interface layer;Tribologyical mechanism;mechanical property