Data assimilation (DA) aims to optimally combine model forecasts and observations that are both partial and noisy. Multi-model DA generalizes the variational or Bayesian formulation of the Kalman filter, and we prove that it is also the minimum variance linear unbiased estimator. Here, we formulate and implement a multi-model ensemble Kalman filter (MM-EnKF) based on this framework. The MM-EnKF can combine multiple model ensembles for both DA and forecasting in a flow-dependent manner; it uses adaptive model error estimation to provide matrix-valued weights for the separate models and the observations. We apply this methodology to various situations using the Lorenz96 model for illustration purposes. Our numerical experiments include multiple models with parametric error, different resolved scales, and different fidelities. The MM-EnKF results in significant error reductions compared to the best model, as well as to an unweighted multi-model ensemble, with respect to both probabilistic and deterministic error metrics.
翻译:数据同化(DA) 旨在最佳地将局部和吵闹的模型预测和观测结合起来。 多模型DA 概括了卡尔曼过滤器的变式或巴伊西亚配方,并且我们证明它也是最小差异线性线性公正估测器。在这里,我们根据这个框架制定并实施了一个多模型的混合Kalman过滤器(MM-EnKF ) 。 MM-EKF 可以将多种模型组合结合起来,同时以流动方式进行预测;它使用适应性模型误差估计,为不同的模型和观测提供矩阵估量的权重。我们使用Lorenz96 模型对各种情况应用这一方法进行演示。我们的数字实验包括多模型,有参数误差、不同的分辨率尺度和不同的忠诚性。MM-EnKF 与最佳模型相比,以及未加权的多模型组合,在概率和确定性误差指标方面均能减少重大误差。