This paper proposes a method for calibrating control parameters. Examples of such control parameters are gains of PID controllers, weights of a cost function for optimal control, filter coefficients, the sliding surface of a sliding mode controller, or weights of a neural network. Hence, the proposed method can be applied to a wide range of controllers. The method uses a Kalman filter that estimates control parameters, using data of closed-loop system operation. The control parameter calibration is driven by a training objective, which encompasses specifications on the performance of the dynamical system. The performance-driven calibration method tunes the parameters online and robustly, is computationally efficient, has low data storage requirements, and is easy to implement making it appealing for many real-time applications. Simulation results show that the method is able to learn control parameters quickly, is able to tune the parameters to compensate for disturbances, and is robust to noise. A simulation study with the high-fidelity vehicle simulator CarSim shows that the method can calibrate controllers of a complex dynamical system online, which indicates its applicability to a real-world system. We also verify the real-time feasibility on an embedded platform with automotive-grade processors by implementing our method on a dSPACE MicroAutoBox-II rapid prototyping unit.
翻译:本文建议了一种校准控制参数的方法。 此类控制参数的例子包括PID控制器的增益、 优化控制的成本函数权重、 过滤系数、 滑动模式控制器的滑动表面、 神经网络的重量。 因此, 拟议的方法可以适用于范围广泛的控制器。 该方法使用卡尔曼过滤器来估计控制参数, 使用闭环系统操作的数据。 控制参数校准由培训目标驱动, 包括动态系统性能的规格。 性能驱动校准方法可以调整在线和稳健的参数, 具有计算效率, 数据储存要求低, 并且易于实施, 吸引许多实时应用程序。 模拟结果显示该方法能够快速学习控制参数, 能够调整参数以弥补干扰, 并且对噪音很有力。 与高阻燃性车辆模拟器CarSim进行模拟研究显示, 这种方法可以校准一个复杂的动态系统的校准器, 表明其适用于实时系统, 数据储存要求较低, 并且易于执行它吸引许多实时应用程序。 模拟结果显示该方法能够快速学习控制参数, 并且用一个自动化系统进行实时自动化系统。</s>