We introduce zero-dimensional affine variety codes (ZAVCs) which can be regarded as $(r,\delta)$-locally recoverable codes (LRCs). These codes come with a natural bound for their minimum distance and we determine those giving rise to $(r,\delta)$-optimal LRCs for that distance, which are in fact $(r,\delta)$-optimal. A large subfamily of ZAVCs admit subfield-subcodes with the same parameters of the optimal codes but over smaller supporting fields. This fact allows us to determine infinitely many sets of new $(r,\delta)$-optimal LRCs and their parameters.
翻译:我们引入了零维方形差异代码(ZAVCs),这些代码可以被视为美元(r,\delta)$-当地可回收代码(LRCs) 。这些代码具有与最小距离相连接的自然约束值,我们确定那些产生美元(r,\delta)$-最佳距离LRC的代码,事实上,这些代码是$(r,\delta)$-最理想的。一大群ZAVCs亚组接受具有与最佳代码相同参数的子字段子代码,但比较小的支持字段要多。这一事实让我们能够确定无限多的新的美元(r,\delta)$-最佳 LRCs及其参数。