We present a solver for Mixed Integer Programs (MIP) developed for the MIP competition 2022. Given the 10 minutes bound on the computational time established by the rules of the competition, our method focuses on finding a feasible solution and improves it through a Branch-and-Bound algorithm. Another rule of the competition allows the use of up to 8 threads. Each thread is given a different primal heuristic, which has been tuned by hyper-parameters, to find a feasible solution. In every thread, once a feasible solution is found, we stop and we use a Branch-and-Bound method, embedded with local search heuristics, to ameliorate the incumbent solution. The three variants of the Diving heuristic that we implemented manage to find a feasible solution for 10 instances of the training data set. These heuristics are the best performing among the heuristics that we implemented. Our Branch-and-Bound algorithm is effective on a small portion of the training data set, and it manages to find an incumbent feasible solution for an instance that we could not solve with the Diving heuristics. Overall, our combined methods, when implemented with extensive computational power, can solve 11 of the 19 problems of the training data set within the time limit. Our submission to the MIP competition was awarded the "Outstanding Student Submission" honorable mention.
翻译:我们为MIP竞争2022年开发了混合整数程序(MIP) 。 我们的方法侧重于寻找可行的解决方案,并通过分支和组合算法改进它。 另一种竞争规则允许使用多达8条线。 每条线都有不同的原始超光谱, 由超光度计调, 以找到可行的解决方案。 在每条线索中, 一旦找到可行的解决方案, 我们停止并使用一个分支和组合法, 并使用嵌入本地搜索结构的分支和组合法, 来改善当前解决方案。 我们执行的三种变体, 以找到一个可行的解决方案, 以找到可行的解决方案。 我们所执行的分层和组合法为10个培训数据集寻找可行的解决方案。 这些超光谱法是我们所执行的超光谱法中最好的。 我们的分支和组合算法在培训数据集的一小部分上有效, 它设法找到一个可行的解决方案, 以无法用 Divividurical Heuristics 来解决当前解决方案, 。 总体而言, 我们的提交方法是“ 我们的提交时间极限 ”, 我们的提交模型的整合方法是“我们的数据授予了“ ” 。