We propose a novel architecture for GAN inversion, which we call Feature-Style encoder. The style encoder is key for the manipulation of the obtained latent codes, while the feature encoder is crucial for optimal image reconstruction. Our model achieves accurate inversion of real images from the latent space of a pre-trained style-based GAN model, obtaining better perceptual quality and lower reconstruction error than existing methods. Thanks to its encoder structure, the model allows fast and accurate image editing. Additionally, we demonstrate that the proposed encoder is especially well-suited for inversion and editing on videos. We conduct extensive experiments for several style-based generators pre-trained on different data domains. Our proposed method yields state-of-the-art results for style-based GAN inversion, significantly outperforming competing approaches. Source codes are available at https://github.com/InterDigitalInc/FeatureStyleEncoder .
翻译:我们为GAN Inversion提议了一个新结构, 我们称之为 Fater- Style 编码器。 风格编码器是操作获得的潜在代码的关键, 而特性编码器则是优化图像重建的关键。 我们的模型能够从预先训练的基于风格的GAN模型的潜在空间中准确转换真实图像, 获得更好的感知质量, 重建错误比现有方法要小。 由于其编码器结构, 该模型允许快速和准确的图像编辑。 此外, 我们证明, 提议的编码器特别适合视频的转换和编辑。 我们在不同数据领域对一些基于样式的生成器进行了广泛的实验。 我们的拟议方法为基于样式的 GAN 转换生成了最先进的结果, 大大优于相互竞争的方法。 源代码可以在 https://github. com/ IndiDigatal Inc/ FetatyStyleEncoder 上查阅 。