We describe a rational approach to reduce the computational and communication complexities of lossless point-to-point compression for computation with side information. The traditional method relies on building a characteristic graph with vertices representing the source symbols and with edges that assign a source symbol to a collection of independent sets to be distinguished for the exact recovery of the function. Our approach uses fractional coloring for a b-fold coloring of characteristic graphs to provide a linear programming relaxation to the traditional coloring method and achieves coding at a fine-grained granularity. We derive the fundamental lower bound for compression, given by the fractional characteristic graph entropy, through generalizing the notion of K\"orner's graph entropy. We demonstrate the coding gains of fractional coloring over traditional coloring via a computation example. We conjecture that the integrality gap between fractional coloring and traditional coloring approaches the smallest b that attains the fractional chromatic number to losslessly represent the independent sets for a given characteristic graph, up to a linear scaling which is a function of the fractional chromatic number.


翻译:我们描述一种合理的方法来减少无损点到点压缩的计算和通信复杂性,以便用侧边信息进行计算。 传统方法依赖于用代表源符号和边缘的脊柱构建一个特征图形,为独立数据集的集合指定一个源符号,以区分功能的准确恢复。 我们的方法使用分数颜色来为特征图形的双倍颜色进行分解,以提供传统色谱方法的线性编程松动,并在细微微微微颗粒中实现编码。 我们从分数特征图形昆虫中得出一个基本较低的压缩框, 其方法是将 K\ “ orner” 图形的图形昆虫概念概括化。 我们通过一个计算示例来显示在传统色谱上绘制分数的编码收益。 我们推测, 分数颜色和传统色谱之间的整体分差差将接近最小的 b, 以最小的b 达到微分色数为无损的分数。 我们推算出, 代表特定特性图形的独立组, 直至直线缩缩缩, 这是分数数的函数的函数 。

0
下载
关闭预览

相关内容

专知会员服务
31+阅读 · 2021年6月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年6月13日
Arxiv
19+阅读 · 2021年2月4日
Directional Graph Networks
Arxiv
27+阅读 · 2020年12月10日
VIP会员
相关资讯
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员