Non-intrusive load monitoring (NILM) aims at decomposing the total reading of the household power consumption into appliance-wise ones, which is beneficial for consumer behavior analysis as well as energy conservation. NILM based on deep learning has been a focus of research. To train a better neural network, it is necessary for the network to be fed with massive data containing various appliances and reflecting consumer behavior habits. Therefore, data cooperation among utilities and DNOs (distributed network operators) who own the NILM data has been increasingly significant. During the cooperation, however, risks of consumer privacy leakage and losses of data control rights arise. To deal with the problems above, a framework to improve the performance of NILM with federated learning (FL) has been set up. In the framework, model weights instead of the local data are shared among utilities. The global model is generated by weighted averaging the locally-trained model weights to gather the locally-trained model information. Optimal model selection help choose the model which adapts to the data from different domains best. Experiments show that this proposal improves the performance of local NILM runners. The performance of this framework is close to that of the centrally-trained model obtained by the convergent data without privacy protection.


翻译:非侵入性负载监测(NILM)旨在将家庭电力消费的全读分解成适合消费者行为分析和节能的电器,这有利于消费者行为分析以及节能。基于深层学习的NILM一直是研究的焦点。为了培训更好的神经网络,网络必须配备包含各种电器的大量数据并反映消费者行为习惯。因此,公用事业和拥有NILM数据的DNOs(分布式网络运营商)之间的数据合作越来越重要。但在合作期间,消费者隐私渗漏和数据控制权丧失的风险出现。为了解决上述问题,已经建立了一个框架,用联合学习(FLF)改进NILM的性能。在这个框架中,各公用事业部门之间共享模型的权重而不是当地数据。全球模型的生成方法是,将当地培训的模型权重加权平均,以收集当地培训的模型信息。最佳模式的选择有助于选择适应不同领域数据的模型。实验显示,这项提议改进了当地国家低层LM数据库的业绩,而没有集中式数据保护框架。

0
下载
关闭预览

相关内容

Python分布式计算,171页pdf,Distributed Computing with Python
专知会员服务
108+阅读 · 2020年5月3日
【干货书】真实机器学习,264页pdf,Real-World Machine Learning
专知会员服务
117+阅读 · 2019年12月24日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
【TED】什么让我们生病
英语演讲视频每日一推
7+阅读 · 2019年1月23日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Arxiv
0+阅读 · 2021年8月6日
Arxiv
10+阅读 · 2021年3月30日
Advances and Open Problems in Federated Learning
Arxiv
18+阅读 · 2019年12月10日
Federated Learning for Mobile Keyboard Prediction
Arxiv
5+阅读 · 2018年11月8日
VIP会员
相关资讯
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
【TED】什么让我们生病
英语演讲视频每日一推
7+阅读 · 2019年1月23日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员