Developing robust and discriminative appearance models has been a long-standing research challenge in visual object tracking. In the prevalent Siamese-based paradigm, the features extracted by the Siamese-like networks are often insufficient to model the tracked targets and distractor objects, thereby hindering them from being robust and discriminative simultaneously. While most Siamese trackers focus on designing robust correlation operations, we propose a novel single-branch tracking framework inspired by the transformer. Unlike the Siamese-like feature extraction, our tracker deeply embeds cross-image feature correlation in multiple layers of the feature network. By extensively matching the features of the two images through multiple layers, it can suppress non-target features, resulting in target-aware feature extraction. The output features can be directly used for predicting target locations without additional correlation steps. Thus, we reformulate the two-branch Siamese tracking as a conceptually simple, fully transformer-based Single-Branch Tracking pipeline, dubbed SBT. After conducting an in-depth analysis of the SBT baseline, we summarize many effective design principles and propose an improved tracker dubbed SuperSBT. SuperSBT adopts a hierarchical architecture with a local modeling layer to enhance shallow-level features. A unified relation modeling is proposed to remove complex handcrafted layer pattern designs. SuperSBT is further improved by masked image modeling pre-training, integrating temporal modeling, and equipping with dedicated prediction heads. Thus, SuperSBT outperforms the SBT baseline by 4.7%,3.0%, and 4.5% AUC scores in LaSOT, TrackingNet, and GOT-10K. Notably, SuperSBT greatly raises the speed of SBT from 37 FPS to 81 FPS. Extensive experiments show that our method achieves superior results on eight VOT benchmarks.
翻译:暂无翻译