We consider the problem of whether a function $f^{}_P$ defined on a subset $P$ of an arbitrary set $X$ can be extended to $X$ monotonically with respect to a preorder $\succcurlyeq$ defined on $X$. We prove that whenever $\succcurlyeq$ has a utility representation, such an extension exists if and only if $f^{}_P$ is gap-safe increasing. An explicit construction for a monotone extension of this kind involving an arbitrary utility representation of $\succcurlyeq$ is presented. The special case where $P$ is a Pareto subset of $X$ is considered. The problem under study does not include continuity constraints.
翻译:我们考虑了一个问题,即任意设定的X美元在子项P美元上界定的美元功能,对于按X美元确定的预先订单,是否可以单独扩大到X美元;我们证明,只要美元有公用事业代表,只有在美元是零差价的情况下,这种延期才会存在;提出这种类型的单调的明显结构,涉及任意的公用事业代表$/succuryequal 美元;如果P美元是Pareto的零差价,则考虑到特殊情况,即P$是X美元。 研究中的问题不包括连续性限制。