There is a lack of consensus within the literature as to how `fairness' of algorithmic systems can be measured, and different metrics can often be at odds. In this paper, we approach this task by drawing on the ethical frameworks of utilitarianism and John Rawls. Informally, these two theories of distributive justice measure the `good' as either a population's sum of utility, or worst-off outcomes, respectively. We present a parameterized class of objective functions that interpolates between these two (possibly) conflicting notions of the `good'. This class is shown to represent a relaxation of the Rawlsian `veil of ignorance', and its sequence of optimal solutions converges to both a utilitarian and Rawlsian optimum. Several other properties of this class are studied, including: 1) a relationship to regularized optimization, 2) feasibility of consistent estimation, and 3) algorithmic cost. In several real-world datasets, we compute optimal solutions and construct the tradeoff between utilitarian and Rawlsian notions of the `good'. Empirically, we demonstrate that increasing model complexity can manifest strict improvements to both measures of the `good'. This work suggests that the proper degree of `fairness' can be informed by a designer's preferences over the space of induced utilitarian and Rawlsian `good'.


翻译:文献中对于如何衡量算法体系的`公平性'缺乏共识,不同的衡量标准往往不尽相同。在本文中,我们通过借鉴实用主义和约翰·罗尔斯的道德框架来对待这项任务。非正式地,这两个分配正义理论分别将“好”作为人口效用的总和或最坏的结果加以衡量。我们提出了一个参数化的客观功能类别,在这两个相互矛盾的“好”概念之间进行(可能)相互冲突的“好”概念。这一类别表明罗尔西恩“无知之利”的放松,其最佳解决办法的顺序与实用主义和罗尔斯的最佳框架汇合在一起。研究这一类别的其他特性包括:(1) 与正规化的优化的关系,(2) 一致估计的可行性,(3) 算法成本。在一些真实世界数据集中,我们比较了最佳的解决办法,并在“好”和罗尔西亚概念之间进行权衡。我们从这个角度表明,最佳解决办法的顺序与最佳解决办法的顺序与实用主义和罗尔西亚最佳的一致。我们从这个角度表明,不断提高的模型的复杂性可以表明,从正确的空间标准上看,从一个良好的标准性程度看,可以表明,从一个更加精确的精确的改进。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
71+阅读 · 2022年6月28日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
24+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2023年3月30日
Arxiv
0+阅读 · 2023年3月7日
Arxiv
19+阅读 · 2022年7月29日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
24+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员