In this paper, we present a novel hemispherical antenna array (HAA) designed for high-altitude platform stations (HAPS). A significant limitation of traditional rectangular antenna arrays for HAPS is that their antenna elements are oriented downward, resulting in low gains for distant users. Cylindrical antenna arrays were introduced to mitigate this drawback; however, their antenna elements face the horizon leading to suboptimal gains for users located beneath the HAPS. To address these challenges, in this study, we introduce our HAA. An HAA's antenna elements are strategically distributed across the surface of a hemisphere to ensure that each user is directly aligned with specific antenna elements. To maximize users minimum signal-to-interference-plus-noise ratio (SINR), we formulate an optimization problem. After performing analog beamforming, we introduce an antenna selection algorithm and show that this method achieves optimality when a substantial number of antenna elements are selected for each user. Additionally, we employ the bisection method to determine the optimal power allocation for each user. Our simulation results convincingly demonstrate that the proposed HAA outperforms the conventional arrays, and provides uniform rates across the entire coverage area. With a $20~\mathrm{MHz}$ communication bandwidth, and a $50~\mathrm{dBm}$ total power, the proposed approach reaches sum rates of $14~\mathrm{Gbps}$.
翻译:暂无翻译