A key component in autonomous driving is the ability of the self-driving car to understand, track and predict the dynamics of the surrounding environment. Although there is significant work in the area of object detection, tracking and observations prediction, there is no prior work demonstrating that raw observations prediction can be used for motion planning and control. In this paper, we propose ObserveNet Control, which is a vision-dynamics approach to the predictive control problem of autonomous vehicles. Our method is composed of a: i) deep neural network able to confidently predict future sensory data on a time horizon of up to 10s and ii) a temporal planner designed to compute a safe vehicle state trajectory based on the predicted sensory data. Given the vehicle's historical state and sensing data in the form of Lidar point clouds, the method aims to learn the dynamics of the observed driving environment in a self-supervised manner, without the need to manually specify training labels. The experiments are performed both in simulation and real-life, using CARLA and RovisLab's AMTU mobile platform as a 1:4 scaled model of a car. We evaluate the capabilities of ObserveNet Control in aggressive driving contexts, such as overtaking maneuvers or side cut-off situations, while comparing the results with a baseline Dynamic Window Approach (DWA) and two state-of-the-art imitation learning systems, that is, Learning by Cheating (LBC) and World on Rails (WOR).
翻译:自主驾驶的一个关键组成部分是自驾驶车能够理解、跟踪和预测周围环境的动态。虽然在物体探测、跟踪和观测预测领域做了大量工作,但先前没有工作证明原始观测预测可用于运动规划和控制。在本文中,我们提议了OserveNet Control,这是应对自主车辆预测控制问题的一种视觉动力方法。我们的方法包括:i)深神经网络,能够在多达10秒和2秒的时空范围内满怀信心地预测未来感官数据。 尽管在物体探测、跟踪和观测预测方面做了大量工作,但是在预测的感官数据的基础上,没有开展任何前期工作,表明原始观测预测预测预测预测预测可用于运动的规划与控制。在使用CARLA和RovisLab的AMTU移动平台作为1:4的侧缩模型进行实验。鉴于该车辆的历史状态和感测数据以利达尔点云为形式,我们的方法旨在以自我监督的方式了解观测所观察到的驱动环境的动态动态,而无需人工指定培训标签。我们的方法是模拟和真实生活中进行实验,使用CARLA和ROVLAB移动平台的移动平台作为1-4的侧模型模型模型模型。我们通过对SWSWS-S-S-RW-RW-R-R-RW-R-C-RW-R-R-C-C-C-RW-C-C-C-R-R-C-C-C-L-L-C-L-L-L-L-L-L-C-C-C-C-C-C-C-C-C-C-C-L-C-C-C-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-