In this paper, we investigate the almost sure convergence, in supremum norm, of the rank-based linear wavelet estimator for a multivariate copula density. Based on empirical process tools, we prove a uniform limit law for the deviation, from its expectation, of an oracle estimator (obtained for known margins), from which we derive the exact convergence rate of the rank-based linear estimator. This rate reveals to be optimal in a minimax sense over Besov balls for the supremum norm loss, whenever the resolution level is suitably chosen.
翻译:在本文中,我们调查了基于级的线性波浪估计多变相交点密度的近乎肯定的趋同性标准。根据经验性过程工具,我们证明对于偏离其预期的甲骨文估计值(以已知边距衡量),我们从中得出基于级的线性估计值的精确趋同率。这个比率显示,只要选择了适当的分辨率,比起贝索夫球,在最高级标准损失方面,在一种小马克思感上是最佳的。</s>