In this paper, we present DeepSIM, a generative model for conditional image manipulation based on a single image. We find that extensive augmentation is key for enabling single image training, and incorporate the use of thin-plate-spline (TPS) as an effective augmentation. Our network learns to map between a primitive representation of the image to the image itself. The choice of a primitive representation has an impact on the ease and expressiveness of the manipulations and can be automatic (e.g. edges), manual (e.g. segmentation) or hybrid such as edges on top of segmentations. At manipulation time, our generator allows for making complex image changes by modifying the primitive input representation and mapping it through the network. Our method is shown to achieve remarkable performance on image manipulation tasks.
翻译:在本文中,我们介绍一个基于单一图像的有条件图像操纵基因模型DeepSIM。 我们发现,广泛的扩增是能够进行单一图像培训的关键,并且将薄板模板(TPS)作为一种有效的增强功能纳入其中。我们的网络学会将图像的原始表达方式映射到图像本身之间。选择原始表达方式会影响操作的方便度和清晰度,并且可以是自动的(例如边缘 ) 、 手动的(例如分解) 或混合的(比如分解 ), 也可以是分层顶端的边缘 。 在操作时,我们的生成器可以通过修改原始输入表示方式并通过网络绘制图像映射图来进行复杂的图像变化。 我们的方法显示在图像操纵任务上取得了显著的绩效 。