In this paper, we first show that increases in beam size of even just small-sized LLM (1B-7B parameters) require an extensive GPU resource consumption, leading to up to 80% of recurring crashes due to memory overloads in LLM-based APR. Seemingly simple solutions to reduce memory consumption are (1) to quantize LLM models, i.e., converting the weights of a LLM from high-precision values to lower-precision ones. and (2) to make beam search sequential, i.e., forwarding each beam through the model sequentially and then concatenate them back into a single model output. However, we show that these approaches still do not work via both theoretical analysis and experiments. To address this, we introduce FLAMES, a novel LLM-based APR technique that employs semantic-guided patch generation to enhance repair effectiveness and memory efficiency. Unlike conventional methods that rely on beam search, FLAMES utilizes greedy decoding to enhance memory efficiency while steering the search to more potentially good repair candidates via a semantic-guided best-first search algorithm. At each decoding step, FLAMES uses semantic feedback from test validation such as the number of passing and failing test cases to select the most promising token to explore further. Our empirical evaluation on the Defects4J and HumanEval-Java datasets shows that FLAMES not only substantially reduces memory consumption by up to 83% compared to conventional LLM-based APR, but also accelerates the repair process. Remarkably, FLAMES successfully generated 133 and 103 correct fixes for 333 and 163 bugs in the Defects4J and HumanEval-Java datasets, respectively. This suggests that FLAMES is not only more efficient but also outperforms state-of-the-art techniques, fixing at least 10 and 11 more bugs than SOTA baselines in the Defects4J and HumanEval-Java datasets, respectively.
翻译:暂无翻译