List learning is a variant of supervised classification where the learner outputs multiple plausible labels for each instance rather than just one. We investigate classical principles related to generalization within the context of list learning. Our primary goal is to determine whether classical principles in the PAC setting retain their applicability in the domain of list PAC learning. We focus on uniform convergence (which is the basis of Empirical Risk Minimization) and on sample compression (which is a powerful manifestation of Occam's Razor). In classical PAC learning, both uniform convergence and sample compression satisfy a form of `completeness': whenever a class is learnable, it can also be learned by a learning rule that adheres to these principles. We ask whether the same completeness holds true in the list learning setting. We show that uniform convergence remains equivalent to learnability in the list PAC learning setting. In contrast, our findings reveal surprising results regarding sample compression: we prove that when the label space is $Y=\{0,1,2\}$, then there are 2-list-learnable classes that cannot be compressed. This refutes the list version of the sample compression conjecture by Littlestone and Warmuth (1986). We prove an even stronger impossibility result, showing that there are $2$-list-learnable classes that cannot be compressed even when the reconstructed function can work with lists of arbitrarily large size. We prove a similar result for (1-list) PAC learnable classes when the label space is unbounded. This generalizes a recent result by arXiv:2308.06424.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
38+阅读 · 2020年12月2日
Deep Anomaly Detection with Outlier Exposure
Arxiv
17+阅读 · 2018年12月21日
Arxiv
15+阅读 · 2018年2月4日
VIP会员
相关VIP内容
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关论文
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员