We study the positivity and causality axioms for Markov categories as properties of dilations and information flow in Markov categories, and in variations thereof for arbitrary semicartesian monoidal categories. These help us show that being a positive Markov category is merely an additional property of a symmetric monoidal category (rather than extra structure). We also characterize the positivity of representable Markov categories and prove that causality implies positivity, but not conversely. Finally, we note that positivity fails for quasi-Borel spaces and interpret this failure as a privacy property of probabilistic name generation.
翻译:我们研究了Markov类别中的假设性和因果关系,作为Markov类别中的推算和信息流动的属性,以及这些类别中任意的半cartesian单潮类的变异。这些帮助我们证明,正态的Markov类别只是对称单潮类的附加属性(而不是额外结构 ) 。 我们还确定了可代表的Markov类别中的假设性,并证明因果关系意味着积极性,而不是相反。最后,我们注意到,准布尔空间的假设性失败,并将这一失败解释为代代名的隐私属性。