Facial Action Unit (AU) detection is a crucial task for emotion analysis from facial movements. The apparent differences of different subjects sometimes mislead changes brought by AUs, resulting in inaccurate results. However, most of the existing AU detection methods based on deep learning didn't consider the identity information of different subjects. The paper proposes a meta-learning-based cross-subject AU detection model to eliminate the identity-caused differences. Besides, a transformer-based relation learning module is introduced to learn the latent relations of multiple AUs. To be specific, our proposed work is composed of two sub-tasks. The first sub-task is meta-learning-based AU local region representation learning, called MARL, which learns discriminative representation of local AU regions that incorporates the shared information of multiple subjects and eliminates identity-caused differences. The second sub-task uses the local region representation of AU of the first sub-task as input, then adds relationship learning based on the transformer encoder architecture to capture AU relationships. The entire training process is cascaded. Ablation study and visualization show that our MARL can eliminate identity-caused differences, thus obtaining a robust and generalized AU discriminative embedding representation. Our results prove that on the two public datasets BP4D and DISFA, our method is superior to the state-of-the-art technology, and the F1 score is improved by 1.3% and 1.4%, respectively.
翻译:脸部行动股(AU)的检测是面部运动进行情感分析的一项关键任务。不同主题的明显差异有时会误导非盟带来的变化,导致不准确的结果。然而,基于深层学习的现有非盟检测方法大多没有考虑不同主题的身份信息。文件提出一个基于元学习的跨学科的非盟检测模式,以消除身份导致的差异。此外,还引入了一个基于变压器的关系学习模块,以了解多个非盟的潜在关系。具体来说,我们拟议的工作由两个子任务组成。第一个子任务是基于元学习的非盟地方代表学习,结果导致不准确的结果。第一个子任务称为MARL,它学习了包含多个主题共享信息并消除身份导致差异的非盟地方区域歧视性代表性。第二个次级任务利用非盟的本地区域代表,第一个子任务作为投入,然后在变压器编码结构的基础上增加关系学习,以捕捉非盟的关系。整个培训进程是逐步升级的。升级和直观化显示,我们的MARL-学习可以消除身份-原因导致的非盟地方代表差异,从而获得一个扎性AU-GA的升级方法。