Causal Optimal Transport (COT) results from imposing a temporal causality constraint on classic optimal transport problems, which naturally generates a new concept of distances between distributions on path spaces. The first application of the COT theory for sequential learning was given in Xu et al. (2020), where COT-GAN was introduced as an adversarial algorithm to train implicit generative models optimized for producing sequential data. Relying on (Xu et al., 2020), the contribution of the present paper is twofold. First, we develop a conditional version of COT-GAN suitable for sequence prediction. This means that the dataset is now used in order to learn how a sequence will evolve given the observation of its past evolution. Second, we improve on the convergence results by working with modifications of the empirical measures via kernel smoothing due to (Pflug and Pichler (2016)). The resulting kernel conditional COT-GAN algorithm is illustrated with an application for video prediction.
翻译:Causal最佳运输(COT)是因对传统最佳运输问题施加时间因果关系限制的结果,这种限制自然产生了道路空间分布距离的新概念。在Xu等人(2020年)首次应用COT理论进行连续学习。在Xu等人(2020年)中,COT-GAN被引入了一种对抗性算法,用于培训优化生成相继数据的隐含基因模型。根据(Xu等人,2020年),本文件的贡献是双重的。首先,我们开发了适合序列预测的COT-GAN有条件版本。这意味着现在使用数据集是为了了解一个序列在观察其过去演变过程中将如何演变。第二,我们通过通过平滑的内核(Pflug和Pichler)对实验性措施进行修改,从而改进了趋同结果。由此产生的COT-GAN有条件算法用视频预测的应用来说明。