We link $n$-jets of the affine monomial scheme defined by $x^p$ to the stable set polytope of some perfect graph. We prove that, as $p$ varies, the dimension of the coordinate ring of a certain subscheme of the scheme of $n$-jets as a $\mathbb{C}$-vector space is a polynomial of degree $n+1$, namely the Ehrhart polynomial of the stable set polytope of that graph. One main ingredient for our proof is a result of Zobnin who determined a differential Gr\"{o}bner basis of the differential ideal generated by $x^p$. We generalize Zobnin's result to the bivariate case. We study $(m,n)$-jets, a higher-dimensional analog of jets, and relate them to regular unimodular triangulations.
翻译:我们用美元将用美元来定义的一模一样法的一模一样法的美元-日元与某个完美图的稳定的多面体相链接。我们证明,由于美元的差异,用美元作为美元+1的一模一样法的一小块子体块的坐标圈的尺寸是美元+1的多元度,即该图稳定的多面体的Ehrhart多面体。我们证据的主要成分之一是佐布宁,他确定了以美元生成的差数理想的差数 Gr\"{o}ner基数。我们把佐布宁的结果概括到双向法中。我们研究的是美元+1美元-日元,一个高维度的喷气机类比,并将之与普通的单面三角联系起来。