In this paper, we extend the epsilon admissible subsets (EAS) model selection approach, from its original construction in the high-dimensional linear regression setting, to an EAS framework for performing group variable selection in the high-dimensional multivariate regression setting. Assuming a matrix-Normal linear model we show that the EAS strategy is asymptotically consistent if there exists a sparse, true data generating set of predictors. Nonetheless, our EAS strategy is designed to estimate a posterior-like, generalized fiducial distribution over a parsimonious class of models in the setting of correlated predictors and/or in the absence of a sparsity assumption. The effectiveness of our approach, to this end, is demonstrated empirically in simulation studies, and is compared to other state-of-the-art model/variable selection procedures.
翻译:在本文中,我们扩展了Epsilon可受理子集(EAS)模式选择方法,从最初在高维线性回归定位中构建的Eslon模式,到在高维多变量回归定位中进行群体变量选择的EAS框架,假设矩阵-热线性模型,我们表明,如果存在少量的、真实的数据生成数据集,Essallon战略就具有内在的一致性,然而,我们的EAS战略旨在估计在设定相关预测器和(或)没有简单假设的情况下,在类类模型上后传、普遍分布的后传和(或)分散的模型。我们的方法在这方面的有效性在模拟研究中得到了经验性的证明,并与其他最先进的模型/可变选择程序相比较。