Logical transductions provide a very useful tool to encode classes of structures inside other classes of structures. In this paper we study first-order (FO) transductions and the quasiorder they induce on infinite classes of finite graphs. Surprisingly, this quasiorder is very complex, though shaped by the locality properties of first-order logic. This contrasts with the conjectured simplicity of the monadic second order (MSO) transduction quasiorder. We first establish a local normal form for FO transductions, which is of independent interest. Then we prove that the quotient partial order is a bounded distributive join-semilattice, and that the subposet of \emph{additive} classes is also a bounded distributive join-semilattice. The FO transduction quasiorder has a great expressive power, and many well studied class properties can be defined using it. We apply these structural properties to prove, among other results, that FO transductions of the class of paths are exactly perturbations of classes with bounded bandwidth, that the local variants of monadic stability and monadic dependence are equivalent to their (standard) non-local versions, and that the classes with pathwidth at most $k$, for $k\geq 1$ form a strict hierarchy in the FO transduction quasiorder.


翻译:逻辑转换提供了一种非常有用的工具, 用于将其他结构类别内部的结构分类编码。 在本文中, 我们研究的是第一阶( FO) 转换及其在无限的限定图表类别上产生的准顺序。 令人惊讶的是, 这一准顺序非常复杂, 虽然是由一阶逻辑的局部特性所决定的。 这与假设的月经第二阶( MSO) 转换准顺序的简单性形成对照。 我们首先为FO 转换建立本地普通格式, 这是独立感兴趣的。 然后我们证明, 商序部分顺序是约束性分配组合组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合组合组合组合式组合式组合式组合组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合组合组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合组合组合组合组合组合组合组合组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合组合组合组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合

0
下载
关闭预览

相关内容

【图与几何深度学习】Graph and geometric deep learning,49页ppt
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
专知会员服务
44+阅读 · 2020年10月31日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
【机器学习术语宝典】机器学习中英文术语表
专知会员服务
60+阅读 · 2020年7月12日
专知会员服务
161+阅读 · 2020年1月16日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年9月14日
Arxiv
0+阅读 · 2021年9月13日
Arxiv
0+阅读 · 2021年9月13日
Arxiv
3+阅读 · 2017年3月8日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员