Multi-hop reasoning (i.e., reasoning across two or more documents) is a key ingredient for NLP models that leverage large corpora to exhibit broad knowledge. To retrieve evidence passages, multi-hop models must contend with a fast-growing search space across the hops, represent complex queries that combine multiple information needs, and resolve ambiguity about the best order in which to hop between training passages. We tackle these problems via Baleen, a system that improves the accuracy of multi-hop retrieval while learning robustly from weak training signals in the many-hop setting. To tame the search space, we propose condensed retrieval, a pipeline that summarizes the retrieved passages after each hop into a single compact context. To model complex queries, we introduce a focused late interaction retriever that allows different parts of the same query representation to match disparate relevant passages. Lastly, to infer the hopping dependencies among unordered training passages, we devise latent hop ordering, a weak-supervision strategy in which the trained retriever itself selects the sequence of hops. We evaluate Baleen on retrieval for two-hop question answering and many-hop claim verification, establishing state-of-the-art performance.
翻译:多跳推理(即两个或两个以上文件的推理)是NLP模型的一个关键要素,该模型利用大型公司来展示广泛的知识。为了检索证据段落,多跳模型必须与跨跳的快速增长搜索空间竞争,代表复杂的询问,其中结合多种信息需求,并解决在培训通道之间跳跃的最佳顺序的模糊性。我们通过Baleen解决这些问题,这个系统可以提高多跳检索的准确性,同时从多跳环境中的薄弱培训信号中大力学习。为了利用搜索空间,我们建议压缩检索,这是一个管道,将每次跳完后的回收通道汇总成一个单一的契约背景。为了模拟复杂的查询,我们引入一个重点的延迟互动检索器,让同一查询代表的不同部分能够匹配不同的相关段落。最后,为了推断未经排序的培训通道之间选择的偏向性,我们设计了潜伏顺序,一种弱的超视战略,由受过训练的检索者自己选择跳槽的序列。我们评估Balen对双跳问题回答和多跳位核查要求的检索。