This work addresses the problem of point cloud registration using deep neural networks. We propose an approach to predict the alignment between two point clouds with overlapping data content, but displaced origins. Such point clouds originate, for example, from consecutive measurements of a LiDAR mounted on a moving platform. The main difficulty in deep registration of raw point clouds is the fusion of template and source point cloud. Our proposed architecture applies flow embedding to tackle this problem, which generates features that describe the motion of each template point. These features are then used to predict the alignment in an end-to-end fashion without extracting explicit point correspondences between both input clouds. We rely on the KITTI odometry and ModelNet40 datasets for evaluating our method on various point distributions. Our approach achieves state-of-the-art accuracy and the lowest run-time of the compared methods.
翻译:这项工作涉及使用深神经网络进行点云登记的问题。 我们提出一种预测方法, 预测两个点云与重叠数据内容相匹配, 但这些云源于移动平台上安装的LiDAR的连续测量。 深入登记原始点云的主要困难在于模板和源点云的融合。 我们提议的架构应用流动嵌入来解决这个问题, 产生描述每个模板点运动的特征。 这些特征随后被用来预测端到端的对齐, 而不提取输入云之间的明确点对应。 我们依靠 KITTI odology 和 ModelNet40 数据集来评估我们在不同点分布上的方法。 我们的方法达到了最新水平的准确性和对比方法的最低运行时间 。