A physics-informed neural network (PINN) uses physics-augmented loss functions, e.g., incorporating the residual term from governing differential equations, to ensure its output is consistent with fundamental physics laws. However, it turns out to be difficult to train an accurate PINN model for many problems in practice. In this paper, we address this issue through a novel perspective on the merits of learning in sinusoidal spaces with PINNs. By analyzing asymptotic behavior at model initialization, we first prove that a PINN of increasing size (i.e., width and depth) induces a bias towards flat outputs. Notably, a flat function is a trivial solution to many physics differential equations, hence, deceptively minimizing the residual term of the augmented loss while being far from the true solution. We then show that the sinusoidal mapping of inputs, in an architecture we label as sf-PINN, is able to elevate output variability, thus avoiding being trapped in the deceptive local minimum. In addition, the level of variability can be effectively modulated to match high-frequency patterns in the problem at hand. A key facet of this paper is the comprehensive empirical study that demonstrates the efficacy of learning in sinusoidal spaces with PINNs for a wide range of forward and inverse modelling problems spanning multiple physics domains.
翻译:物理学知情神经网络(PINN) 使用物理知情神经网络(PINN) 使用物理放大损失功能,例如,将管理差异方程式的剩余术语纳入其中,以确保其产出符合基本物理法则;然而,事实证明很难针对实际中的许多问题培训精确的 PINN 模型。在本文件中,我们通过对与 PINNs 一起在正弦空间学习的优点的新视角来解决这一问题。通过分析模型初始化时的无症状行为,我们首先证明,规模(即宽度和深度)越来越大的PINN 导致偏向平式产出。值得注意的是,一个平面函数是许多物理差异方程式的一个微不足道的解决方案,因此,在远离真正解决方案的同时,将增加损失的剩余期降到了最小。然后我们展示出,在一个我们称之为 sf-PINN 的架构中,对投入的正弦性绘图能够提升产出的变异性,从而避免被困在受欺骗性最小的地方。此外,变异性水平可以有效调整,以匹配高频度模式匹配许多个物理区中的高频度模式,从而展示了多频空域的图。