Machine learning methods have recently shown promise in solving partial differential equations (PDEs). They can be classified into two broad categories: approximating the solution function and learning the solution operator. The Physics-Informed Neural Network (PINN) is an example of the former while the Fourier neural operator (FNO) is an example of the latter. Both these approaches have shortcomings. The optimization in PINN is challenging and prone to failure, especially on multi-scale dynamic systems. FNO does not suffer from this optimization issue since it carries out supervised learning on a given dataset, but obtaining such data may be too expensive or infeasible. In this work, we propose the physics-informed neural operator (PINO), where we combine the operating-learning and function-optimization frameworks. This integrated approach improves convergence rates and accuracy over both PINN and FNO models. In the operator-learning phase, PINO learns the solution operator over multiple instances of the parametric PDE family. In the test-time optimization phase, PINO optimizes the pre-trained operator ansatz for the querying instance of the PDE. Experiments show PINO outperforms previous ML methods on many popular PDE families while retaining the extraordinary speed-up of FNO compared to solvers. In particular, PINO accurately solves challenging long temporal transient flows and Kolmogorov flows where other baseline ML methods fail to converge.


翻译:机器学习方法最近在解决部分差异方程式(PDEs)方面显示出希望。 它们可以分为两大类: 接近解决方案功能, 并学习解决方案操作员。 物理进化神经网络( PINN) 是前者的一个例子, 而 Fourier神经操作员( FNO) 是后者的一个例子。 这两种方法都有缺点。 PINN 的优化具有挑战性, 容易失败, 特别是在多级动态系统上。 FNO 并不受到这一优化问题的影响, 因为它在某个数据集上进行了监督学习, 但获得这类数据可能太昂贵或不可行。 在此工作中, 我们建议物理信息化神经操作操作网络( PINN) 是前者的一个例子, 而 Fourier神经操作操作和功能优化框架( FNO ) 是后者的一个例子。 在操作学习阶段, PINNNO 的优化将解决方案操作员优化到多个参数化 PDE 配置前测试阶段, 将预培训操作员的 PNOtz 优化到 快速的 PDE 常规流 。 在测试中, 测试前的 PDE 常规流中, 将演示前的 PDEL 常规流比前 常规流 常规流 常规流, 常规流, 常规流比前的 PDE 常规流, 常规流 常规流 常规流 常规流 向前的 PNOL。

1
下载
关闭预览

相关内容

专知会员服务
17+阅读 · 2020年9月6日
开源书:PyTorch深度学习起步
专知会员服务
50+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
意识是一种数学模式
CreateAMind
3+阅读 · 2019年6月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
CVPR2018 | Decoupled Networks
极市平台
4+阅读 · 2019年3月22日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【推荐】自动特征工程开源框架
机器学习研究会
17+阅读 · 2017年11月7日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
【推荐】免费书(草稿):数据科学的数学基础
机器学习研究会
20+阅读 · 2017年10月1日
【推荐】深度学习目标检测概览
机器学习研究会
10+阅读 · 2017年9月1日
Arxiv
7+阅读 · 2021年10月19日
Arxiv
6+阅读 · 2019年12月30日
Arxiv
17+阅读 · 2019年3月28日
Arxiv
6+阅读 · 2018年10月3日
VIP会员
相关VIP内容
相关资讯
意识是一种数学模式
CreateAMind
3+阅读 · 2019年6月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
CVPR2018 | Decoupled Networks
极市平台
4+阅读 · 2019年3月22日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【推荐】自动特征工程开源框架
机器学习研究会
17+阅读 · 2017年11月7日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
【推荐】免费书(草稿):数据科学的数学基础
机器学习研究会
20+阅读 · 2017年10月1日
【推荐】深度学习目标检测概览
机器学习研究会
10+阅读 · 2017年9月1日
Top
微信扫码咨询专知VIP会员